ARE ANIMALS FROM THE PATIENTS' FARMS A SOURCE OF NOSOCOMIAL LA-MRSA INFECTION?

Jana Avberšek¹, Bojan Papić¹, Majda Golob¹, Irena Grmek Košnik², Urška Dermota², Darja Kušar¹, Mateja Pate¹, Urška Zajc¹, Matjaž Ocepek¹, Irena Zdovc¹

¹University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Slovenia; ²National Laboratory of Health, Environment and Food, Slovenia jana.avbersek@vf.uni-lj.si

Introduction

Methicillin-resistant *Staphylococcus aureus* (MRSA) is one of the most common causes of nosocomial infections, but the occurrence of livestock-associated MRSA (LA-MRSA) strains in human infections has become an emerging issue. An important risk factor for LA-MRSA infection is a direct or indirect contact with livestock, particularly pigs, which are the main reservoir of LA-MRSA. In Slovenia, there is an increasing number of humans colonised with MRSA resistant to tetracycline, which is the antibiotic resistance characteristic for LA-MRSA.

Materials and methods

- 15 Slovenian farms recent colonisation or hospitalisation of the family members due to LA-MRSA \rightarrow epidemiological investigation \rightarrow nose, throat, skin or wound swabs all household members, nasal swabs animals, farm environment
- \circ 4 farms: LA-MRSA isolates (n=31) from human and animals/environment \rightarrow antimicrobial susceptibility testing (microdilution method MIC for 19 antimicrobials) \rightarrow spa typing
- **WGS:** Illumina paired-end sequencing (2×150 bp) on a NextSeq 500 platform \rightarrow quality trimming with Cutadapt 1.18 and assembly into contigs with SPAdes 3.13.0 \rightarrow ResFinder 3.1, VirulenceFinder 2.0, SCCmecFinder 1.2, CSI Phylogeny 1.4 (SNP analsysis), MLST according to PubMLST scheme for *S. aureus* (https://pubmlst.org/saureus/)

Results

All isolates were of sequence type (ST) 398, harboured the SCCmec type Vc and virulence genes encoding gamma haemolysin (hlyABC) + aureolysin (aur) and were susceptible to rifampin, fusidic acid, vancomycin, linezolid, mupirocin, streptomycin and sulfamethoxazole.

Fig. 1: Maximum-likelihood SNP tree of LA-MRSA isolates, inferred by CSI Phylogeny 1.4 and RAxML 8.2. The tree is labeled with farm, origin of isolation and the presence/absence pattern of resistance genes, classified into six antimicrobial groups (aminoglycosides, beta-lactams, macrolides/lincosamides/streptogramines (MLS) group, tetracyclines, trimethoprim and chloramphenicol). Isolates from index patients are colored in red. Clusters of isolates exhibiting ≤13 SNPs are colored in red.

TIA, tiamulin; FOX, cefoxitin; CLI, clindamycin; SYN, quinupristin/dalfopristin; TET, tetracycline; TMP, trimethoprim; CIP, ciprofloxacin; GEN, gentamicin; ERY, erythromycin; CHL, chloramphenicol; KAN, kanamycin

Conclusions

Index patients were not closely related to animal and environmental isolates from the farms. Pigs from one farm were colonised with different LA-MRSA strains and indistinguishable strains were also detected in the cat and ram. These animals could be the source of LA-MRSA for human colonisation/infection, although the SNP-based analysis suggested nosocomial transmission of LA-MRSA. Long-term colonisation with the same LA-MRSA strain in index patients calls for the implementation of a regimen for successful decolonisation and/or treatment in humans, which should consider that it is also influenced by host factors.